
8 The Delphi Magazine Issue 38

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Like A Tattoo
An Introduction To Graphs, Part 1

Good things come in threes, so
they say (or maybe it’s bad

things come in threes, or maybe it
was the Horsemen of the Apoca-
lypse that came in threes until
Death joined them, having been
laid up with food poisoning). At
any rate, the three suggestions for
this month’s article seemed to
come together within a few weeks
of each other. The first was in The
Magical Maze by Ian Stewart, an
excellent read on mathematics (at
least certain parts of mathematics)
which had a chapter on networks
and how to solve annoying logical
problems. The problems I’m think-
ing of are those that go like this:
you have three jugs of capacity 8, 5
and 3 litres with the largest jug full,
and by using all the jugs you have
to split the 8 litres of water to get 4
litres in the first and second jug
(and no guessing it either!). I’ve
always done these by playing
around with numbers, jotting
down interim steps on a piece of
paper, but Stewart showed how to
do it with the Depth First Search
algorithm (don’t panic, I’ll reveal
all).

Then I got a message from some-
one who wanted to do some kind of
Gantt chart. A Gantt chart is used
in scheduling applications, where
you define a bunch of tasks to be
done and certain of them can only
be started once other tasks have
been completed. The query was
not about drawing them (he could
do that just fine), he wanted to find
an algorithm for determining what
order the tasks should be done in,
given the criteria of x tasks, some
with certain preconditions, and y
equally able developers, and then
to find the minimum time to
complete all the tasks.

Finally came a message from
someone who’d been using my
EZDSL data structures library for
researching the A* algorithm and
wanted some changes to the prior-
ity queue to help with it. I’d never
heard of the A* algorithm, and he

was generous enough to point me
in the right direction. And at
roughly the same time someone at
work started playing Age of
Empires over the internet after
work, in some kind of group death
match play. It’s quite a fun game
(I’m more of an adventure gamer
myself, things like Rama and
Riven). Basically, you’re in charge
of a village that you have to grow
into an empire. You have cute little
workers that you can employ cut-
ting wood or growing food and you
manipulate them over a hexagonal
map. So you don’t have to keep on
worrying about them and making
sure they do their work, you can
point them at where they’re sup-
posed to be and they go there
under their own steam, as it were.
Cleverly, the program ensures that
they go round obstacles like rocks
or trees; one of the algorithms used
for this is the A* algorithm.

So what on earth do all these dis-
parate topics have in common?
The answer is graphs and that is the
topic of this article and the next
one.

Feel No Pain
Now, we’d better get one thing
clear. A computer science graph is
not the same thing as the drawing
you do on squared paper to show
trends in data, comparisons
between different data and so on.
In our context a graph is a network
of nodes joined by lines. Clas-
sically, the nodes are known as ver-
tices (we’ll use the word node

though) and the lines between the
modes are known as edges. Figure
1 is an example graph. You can
think of it as a ‘network’ of nodes
that are interconnected. So, in
Figure 1, you can go from node A to
node D, and from D to A, but you
can’t go from A to B (at least not
without going through D you
can’t).

Sometimes the edges are given
values. These values usually repre-
sent the ‘cost’ of going from one
end of the node to another. For
example, if the graph represented
a set of cities and the roads
between them, then the value for
an edge (ie, a road) might be the
distance between the cities at
either end or the average time it
takes to get you from one to the
other. If the edges have values like
this, the graphs are called labeled
graphs or weighted graphs.

The edges can also be one way
only, instead of the two way shown
in Figure 1. You can follow a given
edge along one way only. The edge
has a direction. The graphs formed
with such edges are known as
directed graphs or digraphs for
short. The Gantt chart example I
gave above is a digraph where the
nodes are tasks to be done, and the
edges show what tasks have to be
completed before others: obvi-
ously the edges have direction
because we can’t undo a task once
it’s completed. Anyway, Figure 2
shows a digraph; notice that the
edges have arrowheads to denote
the direction.

So long as we’re just drawing pic-
tures, it all seems pretty easy so
far. What we need to do is to get the
pretty figures into some kind of

➤ Figure 1: A simple graph.

10 The Delphi Magazine Issue 38

data structure so that we can start
to do things like traversing the
graph (ie visiting every node by
moving along the edges, and
indeed working out whether we
can), finding the smallest distance
to visit all the nodes (known as the
minimum spanning tree), and
other important algorithms. Only
then will we be able to solve the
three examples given at the start.

Paradise
All right then. We have a set of
nodes and a set of edges. The
simplest data structure we could
use (and also the most easily
visualized) is a matrix or two-
dimensional array. We have a
column and a row for every node,
and the intersection of the ith row
and the jth column has a value that
represents the edge between the
ith and jth nodes. If the graph is
simple, the value would be 0 if no
edge existed between the nodes
and 1 if there was an edge. I’m sure
that you can see the matrix would
be symmetrical about its leading
diagonal in this case: if there is an
edge between nodes i and j, then
there’s equally an edge between
nodes j and i, it’s the same one! For
a labeled graph the value at the

intersection of a row and a column
would be the cost of the edge. For a
digraph, the matrix is no longer
symmetrical: edges now have
direction and if there is an edge
between two nodes one way, it
doesn’t mean that there is one the
other way.

In Tables 1 and 2 I’ve given the
matrices for the graphs in Figures 1
and 2. Notice that the matrix in
Table 1 is symmetrical and that of
Table 2 is not. I’ve assumed that if
there is no edge between nodes,
the row-column intersection has
the value 0: for some labeled
graphs the value 0 may have signifi-
cance, and we’ll have to choose
another value.

Before we go any further, it
would make sense for us to recog-
nize that we’re going to need a
class implementation of a graph.
That way, if we find a ‘better’ repre-
sentation of a graph we can fiddle
around with the internals of the
class to implement it, but leave the
external interface of the class the
same. Even better, we create an
ancestor class, and then create
descendants of it. Things we’ll
need to do with a graph (for now
anyway, we’ll come across others
in a minute) are as follows. First,

create an empty graph for a certain
number of nodes. Then possibly
set some data in a node. We need to
be able to set an edge value and
finally, we need to return the edge
value between two nodes.

Listing 1 contains a graph class
definition that implements the
above functionality. I won’t deal
with expanding a graph by adding
more nodes in this article, it’s gen-
erally fairly obvious how to imple-
ment it and it’s either trivial and
easy, or trivial and long-winded. It
would be also convenient to be
able to store a graph to a stream
and reload it, but that goes beyond
the scope of this article.

Smooth Operator
Let’s consider the first matrix. I’m
sure you’ll agree that the matrix
has a lot of redundant information:
half the matrix has exactly the
same information as the other half,
with the line of symmetry being the
leading diagonal (from top left to
bottom right). We could use a tri-
angular matrix instead: either the
top half from the leading diagonal
or, just as easily, if not more so, the
bottom half.

How do we represent the trian-
gular matrix in memory? I’m sure
you can easily code up a rectangu-
lar matrix: store the matrix in a
linear array and to access the ele-
ment at row i and column j you’d
actually access array element
(i * ElementsPerRow + j) assuming
that rows and columns are
counted from 0. This is how the
compiler compiles 2-dimensional
arrays anyway. The code on this
month’s disk has a rectangular
matrix graph class.

➤ Figure 2: A digraph.

A B C D E F G

A . . . 1 1 . .

B . . 1 1 . . .

C . 1 . 1 . . .

D 1 1 1 . . 1 1

E 1 1 .

F . . . 1 1 . .

G . . . 1 . . .

➤ Table 1: Matrix representation
of Figure 1.

A B C D E F G

A . . . 1 1 . .

B . . 1 1 . . .

C

D . . 1 . . 1 1

E

F 1 . .

G

➤ Table 2: Matrix representation
of Figure 2.

➤ Listing 1: Ancestor graph class.

TaaGraph = class
private
...

protected
function gGetEdge(aFromIndex, aToIndex : integer) : pointer;
virtual; abstract;

function gGetNode(aIndex : integer) : pointer; virtual; abstract;
procedure gSetEdge(aFromIndex, aToIndex : integer;
aValue : pointer); virtual; abstract;

procedure gSetNode(aIndex : integer; aValue : pointer); virtual; abstract;
public
constructor Create(aNodeCount : integer);
property Edges[aFromIndex, aToIndex : integer] : pointer
read gGetEdge write gSetEdge;

property NodeCount : integer read gNodeCount;
property Nodes[aIndex : integer] : pointer read gGetNode write gSetNode;

end;

12 The Delphi Magazine Issue 38

But triangular matrices? Well,
we use the same trick, but just
make the conversion calculation a
little more complex (but not that
much so). Let’s use the bottom half
of the matrix. The first row (row 0)
has one element, that is at (0,0),
and this is mapped to element 0 of
the linear array. The second row
has two elements, at (1,0) and
(1,1), and these are mapped to ele-
ments 1 and 2. The third row has
three, at (2,0), (2,1), (2, 2), being
mapped to elements 3, 4 and 5. And
so on. The formula for the mapping
makes use of triangular numbers,
1, 3, 6, 10, 15... (the number of cells
in a triangular matrix is a triangular
number). The formula for the nth
triangular number is n*(n+1)/2, so
for the mapping formula we’ll need
to calculate the triangular number
for the previous row and then add
the column number to that.

Remembering that we count
from 0 and not 1, the mapping for-
mula to convert (i, j) to an array
element is (i * (i+1) / 2) + j. In Delphi
that converts to:

ElementNumber :=
((i * succ(i)) div 2) + j;

The compiler will convert the div 2
into a shift-right operation instead,
so the expression compiles very
neatly. Listing 2 shows a simple
implementation of the triangular
matrix representation of a graph,
with edges represented as a

pointer (a four byte entity), we
could typecast these pointers to
longint or TObjects, for example.
Notice that we use the symmetrical
aspect of the matrix to access (j, i)
with j < i by swapping the indexes
over and accessing (i, j) instead.

A point to make is that we can
save some space with this imple-
mentation if we know that there
will never be an edge from a node
to itself, ie (i, i) is always empty or
0. We can code this special case
(row = column) into the access
routines and change the mapping
formula to:

ElementNumber :=
((i * pred(i)) div 2) + j;

But, in general, saving the extra
space is not worth it for the loss of
possible functionality in a general
class, especially when we consider
how empty the matrix is.

Keep Looking
Having got our first main graph
class representation, let’s sit back
and consider the matrices it will be
encoding. The first thing to recog-
nize is that a vast majority of
matrix elements will be empty: net-
works we encounter in real life are
not that dense. There will not be an
edge from every node to every
other node (even in our brains’
networks, each neuron is ‘only’
connected to about 10,000 others,
compared to the billions that are

➤ Figure 3: Array of linked lists representation of Figure 2.

October 1998 The Delphi Magazine 13

present). So we are ‘wasting’ a lot
of space in our triangular matrix
representation. However, the
tradeoff is that it’s very fast to
access an element. Imagine a 1,000
node graph. The memory required
for the linear array is about 2Mb
(there’ll be 500,500 elements, now
you see why including the diagonal
makes little difference in practice),
and if we propose that every node
is attached to two others on the
average, there’ll be 1,000 edges in
use, or 0.2% of the elements. Plus,
the triangular matrix representa-
tion doesn’t help us with digraphs.
Time to investigate another repre-
sentation that will be slower in use
but much more space efficient.

Ideally, what we want to do is to
just encode the edges that are in
use. That’s all. No ‘empty’ cells to
allocate memory for or to track.
Just the facts, man.

The best way of doing this is to
have an array of linked lists. Each
element in the array represents a
single node, and the linked list
from that array element has one
element per edge. The edge linked
list items hold a node index (ie, to
which node is this edge defined?)
and an edge value. Figure 3 shows
the ‘array of linked lists’ represen-
tation of our original digraph in
Figure 2. Note that this representa-
tion allows simple graphs,
weighted graphs and directed
graphs, whereas the triangular
matrix version was only good for
graphs that aren’t directed.

Thinking of implementation
details now, it would make sense to
have the linked list sorted in node
order: this makes it much easier
and quicker to determine whether
a node was in a list or not. Also, we
haven’t really talked about the
nodes themselves yet, we’ve been
concentrating so hard on the rep-
resentation of the edges. Presum-
ably we’d have an array of nodes
anyway (each of them an object
instance, at a guess) and this
implementation neatly kills two
birds with one stone: each element
in the array of nodes has a node
instance and a linked list of edges
that radiate out from that node.

Listing 3 shows the class that
implements the array of linked lists

representation of a graph. There
are a couple of little clever things
to point out in the code. To make
the insertion and search for items
in each node’s linked list of edges
easier to code, we use a linked list
with a head node and a footer
node. The head node uses a node
index of -1, which is less than any
node index (these start at zero);
the footer node uses a node index
of $7FFFFFFF, which is greater than
any node index (this value is 2 bil-
lion-odd, and we just can’t have
that many items in a linked list due
to memory restrictions). This
means that every edge we add will
fit in between these two extremes,
making the insertion code much
easier to write (and the search for
an edge easier too). This kind of
trick is usual with linked lists, trad-
ing off some extra allocations for
simpler and more efficient code.

The next trick we use is to recog-
nize that the header node holds no
edge value (it doesn’t represent an
edge at all, it’s just there for our
coding convenience) and so we
can store the node’s value in there
(we use a variant record declara-
tion to make the code legible).
Apart from these two tricks, the
code is fairly simple.

Haunt Me
We’ve now seen three different
representations for a graph: a rect-
angular matrix (very fast, but large
memory requirements), the trian-
gular matrix (very fast, smaller
memory requirements, but no
good for digraphs) and the linked
list approach (slower, much
smaller memory requirements,
good for any graph). Now it’s time
to think about what we can do with
graphs.

The first thing we might want to
try and do is to visit all the nodes,
starting at a given node. Before you
say ‘Well, duh! Julian, you’ve
defined your abstract graph with
an array of nodes, so just use that
with a for loop’ think on a little.
Look at Figure 4. This is a graph
that consists of two separate
sub-graphs. There’s no way to go
from node A to node Z, the graphs
each reside in are not joined
together. Figure 2 is another

14 The Delphi Magazine Issue 38

constructor TaaTriMatrixGraph.Create(aNodeCount : integer);
begin
inherited Create(aNodeCount);
mgNodes := TList.Create;
mgNodes.Count := aNodeCount;
mgEdges := TList.Create;
mgEdges.Count := (aNodeCount * succ(aNodeCount)) div 2;

end;
destructor TaaTriMatrixGraph.Destroy;
begin
mgEdges.Free;
mgNodes.Free;
inherited Destroy;

end;
function TaaTriMatrixGraph.gGetEdge(
aFromIndex, aToIndex : integer) : pointer;

var Temp : integer;
begin
{..validation of indexes..}
if (aFromIndex < aToIndex) then begin
Temp := aFromIndex;
aFromIndex := aToIndex;
aToIndex := Temp;

end;
Result :=
mgEdges[(aFromIndex*succ(aFromIndex)) div 2 + aToIndex];

end;
function TaaTriMatrixGraph.gGetNode(aIndex : integer) :
pointer;

begin
{..validation of index..}
Result := mgNodes[aIndex];

end;
procedure TaaTriMatrixGraph.gSetEdge(aFromIndex, aToIndex :
integer; aValue : pointer);

var Temp : integer;
begin
..validation of indexes..
if (aFromIndex < aToIndex) then begin
Temp := aFromIndex;
aFromIndex := aToIndex;
aToIndex := Temp;

end;
mgEdges[(aFromIndex*succ(aFromIndex)) div 2 + aToIndex] :=
aValue;

end;
procedure TaaTriMatrixGraph.gSetNode(aIndex : integer;
aValue : pointer);

begin
..validation of index..
mgNodes[aIndex] := aValue;

end;

➤ Listing 2: Triangular matrix
representation.

example: if you look carefully, you
can’t get to node B from node A and
vice-versa. So the question is a
valid one. If, for every node, there
is a way to get to every other node,
the graph is called connected. From
the visual representation of a
simple graph you can usually tell
quickly if it is connected; a digraph
is a completely different animal,
sometimes it’s just not obvious at
all. So, we want to be able to start a
given node and then visit all of the
nodes that are connected to it.

We’ll describe the depth-first tra-
versal first. This is a systematic
(and recursive) way of traversing a
graph: you begin at the starting
node, ‘visit’ it (ie do something
with it), select an edge from that
node and follow it. You continue
this process until you reach a dead
end (either a node with only one

edge, the one you came in on, or a
node from which all edges lead to
nodes you’ve already visited). You
then back up your path until you
find a node with another edge that
leads to an unvisited node and con-
tinue the process. Eventually, you
will visit all nodes (if the graph is
connected) or you’ll have
exhausted all the nodes you can
visit, leaving some unvisited (the
graph is not connected).

Depth-first traversals are equiv-
alent to preorder traversals of
trees. To see this, let’s look at the
depth-first traversal of the graph in
Figure 1. Figure 5 has the details.
We can rearrange the graph
according to its depth-first tra-
versal into a multiway tree as
shown in Figure 6. This tree is
known as a spanning tree. Preorder
traversal means: visit the current
node, then recursively preorder
traverse the child subtrees, from
left to right.

Cherry Pie
Enough of the appetizer theory,
let’s get to the entrée coding. We
can write the depth-first traversal
algorithm as pseudo-code first, see
Listing 4. From this simple
pseudo-code, you see that we have
a few extra things to record and
take care of before writing the

➤ Figure 4: A graph that is
not connected.

➤ Figure 5: Depth-first traversal of a graph.

➤ Figure 6: Depth-first traversal
as spanning tree.

16 The Delphi Magazine Issue 38

type
PllNode = ^TllNode;
TllNode = packed record
llnNext : PllNode; // next node
llnNodeInx : integer; // node index
case boolean of
false : (llnEdge : pointer); // edge value
true : (llnNode : pointer); // node value

end;
constructor TaaLinkListGraph.Create(aNodeCount : integer;
aIsDigraph : boolean);

var i : integer;
begin
inherited Create(aNodeCount);
lgNodes := TList.Create;
lgNodes.Count := aNodeCount;
for i := 0 to pred(aNodeCount) do
lgCreateEmptyLinkedList(i);

gIsDigraph := aIsDigraph;
end;
destructor TaaLinkListGraph.Destroy;
var i : integer;
begin
for i := 0 to pred(NodeCount) do
lgDestroyLinkedList(i);

lgNodes.Free;
inherited Destroy;

end;
function TaaLinkListGraph.gGetEdge(aFromIndex, aToIndex :
integer) : pointer;

var
WalkNode : PllNode;

begin
{..validation of index..}
Result := nil;
WalkNode := lgNodes[aFromIndex];
while (WalkNode^.llnNodeInx < aToIndex) do
WalkNode := WalkNode^.llnNext;

if (WalkNode^.llnNodeInx = aToIndex) then
Result := WalkNode^.llnEdge;

end;
function TaaLinkListGraph.gGetNode(aIndex : integer) :
pointer;

begin
{..validation of index..}
Result := PllNode(lgNodes[aIndex])^.llnNode;

end;
procedure TaaLinkListGraph.gSetEdge(aFromIndex, aToIndex :
integer;
aValue : pointer);

begin
{..validation of index..}
lgSetEdgePrim(aFromIndex, aToIndex, aValue);
if (not IsDigraph) and (aFromIndex <> aToIndex) then
lgSetEdgePrim(aToIndex, aFromIndex, aValue);

end;
procedure TaaLinkListGraph.gSetNode(aIndex : integer;
aValue : pointer);

begin
{..validation of index..}
PllNode(lgNodes[aIndex])^.llnNode := aValue;

end;
procedure TaaLinkListGraph.lgCreateEmptyLinkedList(
aAtIndex : integer);

var
FirstNode : PllNode;
LastNode : PllNode;

begin
New(LastNode);
with LastNode^ do begin
llnNext := nil;
llnEdge := nil;
llnNodeInx := $7FFFFFFF; // greater than any node index

end;
New(FirstNode);
with FirstNode^ do begin
llnNext := LastNode;
llnNode := nil;
llnNodeInx := -1; // less than any node index

end;
lgNodes[aAtIndex] := FirstNode;

end;
procedure TaaLinkListGraph.lgDestroyLinkedList(aAtIndex :
integer);

var Dad, Son : PllNode;
begin
Son := lgNodes[aAtIndex];
while (Son <> nil) do begin
Dad := Son;
Son := Dad^.llnNext;
Dispose(Dad);

end;
end;
procedure TaaLinkListGraph.lgSetEdgePrim(aFromIndex,
aToIndex : integer; aValue : pointer);

var DadNode, WalkNode, NewNode : PllNode;
begin
DadNode := nil;
WalkNode := lgNodes[aFromIndex];
while (WalkNode^.llnNodeInx < aToIndex) do begin
DadNode := WalkNode;
WalkNode := DadNode^.llnNext;

end;
if (WalkNode^.llnNodeInx = aToIndex) then
WalkNode^.llnEdge := aValue

else begin
New(NewNode);
with NewNode^ do begin
llnNext := WalkNode;
llnEdge := aValue;
llnNodeInx := aToIndex;

end;
DadNode^.llnNext := NewNode;

end;
end;

➤ Listing 3: Array of linked lists representation.

traversal code itself. The first is
obvious: we have to somehow
mark a node as being unvisited and
visited. The next is that we need to
expand our abstract graph class
definition to include a method that
returns the nth edge from a given
node.

Let’s take the last one first. For
the rectangular matrix representa-
tion, all we need to do is step along
a row in the matrix (the row for the
node we’re interested in) and
count off the edges that exist,
ignoring the ones that don’t, until

we get to the nth one. Pretty easy.
Similarly for the linked list repre-
sentation, which is, if anything,
even easier: after all there are no
non-existent edges in the linked
list. (The only gotcha is making
sure we don’t run off the end of the
linked list: to make this easier we
could keep a count of edges for
each node.) The code on the
diskette has the details.

The triangular matrix represen-
tation, on the other hand, is awk-
ward. It’s got a similar feel to the
rectangular matrix but with a

virtual half. We could implement a
for loop that calculated the linear
array index for a given node for
each other node and then access
the edge value, but that’s a little
long-winded. Let’s be a little
cleverer. Consider the indexes we
are calculating for node n: for all
nodes m <= n we calculate n(n+1)/2
+ m, and for m > n we calculate
m(m+1)/2 + n. Diagrammatically,
we step along a horizontal row
until we hit the leading diagonal
and then we step down a vertical
column. Stepping along the row is
simple: we continue adding one to
the linear array index until we hit
the point on the diagonal (n = m),
obviously we have to increment m
to know when we do hit the diago-
nal. To step down the column, we
continue adding m + 1 to the linear
array index, remembering again to
increment m. To see why we use

procedure DepthFirst(aNode)
Visit aNode
Mark aNode as visited
for all edges from aNode
if node linked through edge has not been visited
DepthFirst(linked node)

➤ Listing 4: Depth-first traversal as pseudo-code.

October 1998 The Delphi Magazine 17

function TaaTriMatrixGraph.GetNodeEdge(
aFromIndex : integer; aNthEdge : integer;
var aEdge : pointer; aToIndex : integer) : boolean;

var
ArrayInx : integer;
ToIndex : integer;

begin
Result := false;
if (aFromIndex < 0) or

(aFromIndex >= mgNodes.Count) or
(aNthEdge < 0) then
Exit;

ArrayInx := (aFromIndex * succ(aFromIndex)) div 2;
ToIndex := 0;
{first go along horizontally along a row}
while (ToIndex <= aFromIndex) do begin
if (mgEdges[ArrayInx] <> nil) then begin
if (aNthEdge = 0) then begin
Result := true;
aEdge := mgEdges[ArrayInx];
aToIndex := ToIndex;
Exit;

end;
dec(aNthEdge);

end;
inc(ToIndex);
inc(ArrayInx);

end;
{then go vertically down a column}
inc(ArrayInx, pred(ToIndex));
while (ToIndex < NodeCount) do begin
if (mgEdges[ArrayInx] <> nil) then begin
if (aNthEdge = 0) then begin
Result := true;
aEdge := mgEdges[ArrayInx];
aToIndex := ToIndex;
Exit;

end;
dec(aNthEdge);

end;
inc(ToIndex);
inc(ArrayInx, ToIndex);

end;
end;

➤ Listing 5: Getting the nth edge for a node in a triangular matrix.

m+1, calculate the difference in
linear array index between (n, m)
and (n, m+1) for m > n. Listing 5 has
the GetNodeEdge method for the
triangular matrix representation.

Having sorted out the method to
get the nth edge for a given node,
we now have to think about the
other problem the pseudo-code
offers us: marking nodes that have
been visited. We could alter the
graph classes again, but this isn’t a
very attractive proposition. Every
time we need a more specialized
traversal we’ll find that we’re going
to change our graph representa-
tion class to accommodate it, some
of these traversals might require
information to be gathered during
the traversal that’s mutually
incompatible with other travers-
als. We’ll end up with a graph class
for traversal method X, and one for
method Y, and so on. Even worse,
we’d have to repeat the same code
in all our descendants if we’re not
too careful. And what happens if
we want to have a couple of tra-
versals active on the same graph at
the same time?

Bullet Proof Soul
No, we need to rethink this design.
What we’ll do is have a separate
class that will perform the
depth-first traversal. This class will
store a list of nodes already visited
and will call a routine we define
that will perform the action for
each node we visit. The class will
store enough state information to
efficiently move through the nodes
in the graph, no matter what graph
representation we use. This is a very

powerful concept: isolation of the
data structure we iterate through
from the actual mechanics of the
iteration.

The class has a very simple
structure: it has a couple of events

that will fire for each node visited,
a list containing information about
each node visited, and an Execute
method that will perform the
entire depth-first traversal. Two
events for each node? Why?
Because it provides a more generic
solution to our problem. The first

TaaDepthFirstIterator = class
private
...
protected
...
public
constructor Create(aGraph : TaaGraph);
destructor Destroy; override;
procedure Execute(aFromIndex : integer);
procedure Reset;
property OnPreProcess : TaaProcessNode
read dfiPreProcess write dfiPreProcess;

property OnPostProcess : TaaProcessNode
read dfiPostProcess write dfiPostProcess;

end;

➤ Listing 6: The depth-first iterator class.

procedure TaaDepthFirstIterator.Execute(aFromIndex : integer);
var
i : integer;
NewNodeInx : integer;
Edge : pointer;
OurLevel : integer;

begin
// perform preprocessing on the node
if Assigned(dfiPreProcess) then
dfiPreProcess(Self, aFromIndex);

// mark the node as preprocessed
with PdfiCounter(dfiNodes[aFromIndex])^ do begin
cMarker := 1;
OurLevel := cLevel;

end;
// iterate through the edges from this node
i := 0;
while dfiGraph.GetNodeEdge(aFromIndex, i, Edge, NewNodeInx) do begin
with PdfiCounter(dfiNodes[NewNodeInx])^ do begin
if (cMarker = 0) then begin
cParent := aFromIndex;
cLevel := succ(OurLevel);
Execute(NewNodeInx);

end;
end;
inc(i);

end;
// perform postprocessing on the node
if Assigned(dfiPostProcess) then
dfiPostProcess(Self, aFromIndex);

// mark the node as postprocessed
with PdfiCounter(dfiNodes[aFromIndex])^ do begin
cMarker := 2;

end;
end;

➤ Listing 7

18 The Delphi Magazine Issue 38

event, the pre-process event, is
fired in preorder sequence (that is,
before any of the node’s edges are
followed) and the second, the
post-process event, is fired in
postorder sequence (that is, after
all the node’s edges are followed).
Usually you would use the
pre-process event for a depth-first
traversal.

The iterator class (its interface is
in Listing 6) stores the following
information for each node:
whether it’s been visited or not, its
‘parent’ (ie, the node from which it
was first visited), the level of the
node (the starting node is at level 0,
nodes visited from that node are at
level 1, nodes from those nodes are
at level 2, and so on, this gives us an
appreciation of the ‘depth’ of the
traversal).

And the Execute method, shown
in Listing 7, ties it all together in a
recursive manner. The current
node is visited for the pre-process
phase, marked as such, then all
edges are followed and the Execute
method is called recursively for all
unvisited nodes at their ends.

Finally the current node is visited
for the post-process phase.

As with all recursive routines, we
must worry about the depth of
recursion. Because graphs are
such a freeform kind of data struc-
ture, we must consider the worst
case: the nodes are strung together
like beads on a string. In this case,
the depth of recursion would be
the same as the number of nodes.
This is a little too unbounded for
safety’s sake (it’s safe enough for
10 nodes, but for 1,000 it’s getting a
little too dodgy for my tastes), so
an enhancement we should con-
sider making is to remove the
recursion by using an external
stack, as I discussed in my Algo-
rithms Alfresco column in the July
issue.

When Am I Going
To Make A Living?
At this point, I must break off and
continue with discussions of
graphs and graph algorithms next
month. The reason? I get married
in three days time and if I don’t do
some wedding preparations soon,
my wife-to-be just won’t turn up!

Julian Bucknall can be graphic
and is fully networked, but is
somewhat shady. The code that
accompanies this article is
freeware and can be used as-is in
your own applications.

© Julian M Bucknall, 1998

For news, information on what’s
coming in the next issue, updated
article index files and more, visit

www.itecuk.com

	Feel No Pain
	Paradise
	Smooth Operator
	Keep Looking
	Haunt Me
	Cherry Pie
	Bullet Proof Soul
	When Am I Going To Make A Living?

